Обмен энергии физиология. Обмен веществ и энергии. Методы измерения энергетического баланса организма

Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Ульяновский государственный технический университет ФИЗИОЛОГИЯ ЭНЕРГЕТИЧЕСКОГО ОБМЕНА МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ЛАБОРАТОРНОЙ РАБОТЕ ПО КУРСУ «ФИЗИОЛОГИЯ ЧЕЛОВЕКА» Составитель О. Е. ФАЛОВА Ульяновск 2006 УДК 612 (076) ББК 23.073я7 Ф50 Рецензент доктор медицинских наук, профессор Потатуркина- Нестерова Н. И. Физиология энергетического обмена: методические указания / сост. Ф50 О. Е. Фалова. – Ульяновск: УлГТУ, 2006. – 28 с. В методических указаниях к лабораторной работе по курсу «Физиоло- гия человека» рассмотрены теоретические основы физиологии энергетиче- ского обмена организма и методы его определения. Представлены необ- ходимые материалы для освоения принципов составления пищевых рацио- нов и оценке энергетических затрат организма при различных видах дея- тельности. Предназначены для студентов специальности 280202 «Инже- нерная защита окружающей среды». УДК 612 (076) ББК 23.073я7 Учебное издание ФИЗИОЛОГИЯ ЭНЕРГЕТИЧЕСКОГО ОБМЕНА Методические указания Составитель ФАЛОВА Оксана Евгеньевна Редактор О. А. Фирсова Подписано в печать 06.04.2006. Формат 60Ч84/16. Печать трафаретная. Бумага офсетная. Усл. печ. л. 1,40. Тираж 50 экз. Заказ Ульяновский государственный технический университет, 432027, г. Ульяновск, ул. Сев. Венец, д. 32. Типография УлГТУ, 432027, г. Ульяновск, ул. Сев. Венец, д. 32. © Фалова О. Е., составление, 2006 © Оформление. УлГТУ, 2006 2 СОДЕРЖАНИЕ Общие сведения об обмене веществ.................................................................... 4 Методы исследования энергообмена................................................................... 8 Выполнение лабораторной работы....................................................................... 10 Таблицы для записи результатов.......................................................................... 15 Контрольные вопросы............................................................................................ 15 Библиографический список................................................................................... 16 Приложение А......................................................................................................... 17 Приложение Б......................................................................................................... 19 Приложение В......................................................................................................... 21 Приложение Г......................................................................................................... 22 3 Общие сведения об обмене веществ Цель работы: научиться определять и оценивать энергозатраты при раз- личных функциональных состояниях. Неотъемлемым свойством всех биологических систем является обмен веществ и энергии между организмом и средой. Обмен веществ – это процесс метаболизма веществ, поступивших в организм, в результате которого из этих веществ могут образовываться более сложные или, наоборот, более простые вещества. Другими словами – это совокупность физических, химиче- ских и физиологических процессов превращения веществ и энергии в организме человека и обмен между организмом и средой. Поступающие с пищей в организм вещества подвергаются изменениям – метаболизируются, частично они превращаются в вещества самого организма. В этом состоит процесс ассимиляции (или анаболизм), обеспечивающий пласти- ческие потребности организма, т. е. построение новых структур и обновление клеток. Обратный процесс – диссимиляция (или катаболизм), состоит в расщеп- лении вещества живого организма с выделением энергии, что обеспечивает энергетические потребности организма. Процессы диссимиляции и ассимиляции находятся в теснейшей взаимосвя- зи, характеризуются высокой степенью упорядоченности, организованы во време- ни и пространстве, образуют целостную систему. Потребность организма в пла- стических веществах может быть удовлетворена тем минимальным уровнем их поступления с пищей, который будет уравновешивать потери структурных бел- ков, жиров, углеводов. Потребности в этих веществах строго индивидуальны. Обмен веществ характеризуется следующими параметрами: основной обмен, уровень основного обмена. Под основным обменом (ОО) понимают минимальный уровень затрат, необходимый для поддержания жизнедеятельности организма в условиях отно- сительного полного физического и эмоционального покоя. Энергетические за- 4 траты основного обмена обычно выражаются в килокалориях за 1 час (или су- тки) и рассчитываются на 1 кг массы тела на 1 м2 его поверхности. Для взрослого человека среднее значение ОО равно 1 ккал/кг/час, для мужчин – 1 700 ккал/сутки, для женщин – 1 500 ккал/сутки, т. е. на 10–15% меньше, чем у мужчин. Перед определением основного обмена человек должен находиться в состоянии физического и психического покоя и не принимать никакой пищи в течение 12–18 часов. Тогда к моменту измерения желудочно-кишечный тракт испытуемого будет пуст. Количество расходуемой энергии (работа сердца, кровообращение, дыха- ние, сохранение постоянной температуры тела) называют уровнем основного обмена. Данная величина зависит от пола, возраста, массы тела, состояния здо- ровья индивидуума и коррелирует с отношением поверхности тела к его объе- му. Немецкий физиолог М. Рубнер сформулировал закон энергозатрат: энерго- затраты пропорциональны величине поверхности тела. Говоря об обмене веществ, имеют в виду белковый, углеводный и липидный обмены. Белковый обмен Обмен белков – процесс усвоения (синтеза и распада) клетками и тканями организма азотсодержащих соединений белков и аминокислот. Белки находятся в состоянии непрерывного обмена и обновления. Коли- чество расщепившегося белка равно количеству синтезированного. Синтез бел- ков происходит из аминокислот и низкомолекулярных полипептидов, которые образуются при расщеплении белков в пищеварительной системе и всасывают- ся в кровь. Поскольку азот в пище содержится преимущественно в белках (в 100 г белка содержится 16 г азота), соотношение поступивших в организм и разрушенных белков определяют по величине азотистого баланса – соотно- шения поступившего и выделившегося с пищей азота. Если поступление азота превышает его выделение, то в организме возникает положительный азотистый 5 баланс или преобладание синтеза белка над распадом. При отрицательном азо- тистом балансе распад белка преобладает над синтезом. Регуляция белкового обмена связана с деятельностью промежуточного мозга, гормонов щитовидной железы – тироксином и соматотропным гормоном гипофиза. Биологическая ценность белков определяется наличием в них незамени- мых аминокислот, их соотношением с заменимыми, а также определяется пере- вариваемостью ферментами ЖКТ. Различают биологически полноценные и не- полноценные белки. Полноценные белки содержат все незаменимые аминокис- лоты, неполноценные белки – имеют дефицит нескольких незаменимых амино- кислот. Источниками полноценных белков животного происхождения являются молоко, молочные продукты, яйцо, мясо, рыба, печень. Биологическая ценность белков растительного происхождения значительно ниже, эти белки поступают в основном с хлебом и крупами. Норма потребления белков составляет 55% пищевого рациона или 0,75 г/кг. При недостаточном потреблении белков развивается белковый голод, проявляющийся повышенной чувствительностью к инфекциям, может возник- нуть белковое голодание, приводящее иногда к смертельным исходам. Углеводный обмен Основная масса углеводов, поступающих в организм, используется для удовлетворения энергетических потребностей организма. Более 55% энергии черпается из углеводов. Основной источник углеводов – это растения, которые содержат до 80–90% углеводов. В основном это крахмал, а также клетчатка. В сутки организму необходимо поступление 400–500 г углеводов, в том числе крахмала 350–400 г, моносахаридов и дисахаридов – 50–100 г. Конечным про- дуктом расщепления углеводов являются моносахариды: глюкоза, фруктоза, лактоза, и т. д. Глюкоза является источником энергии для жизнедеятельности клеток головного мозга, необходима для синтеза аминокислот, полисахаридов. 6 Одним из самых распространенных заболеваний, связанных с избыточ- ным употреблением сахара, является гипогликемия. Она является предшест- венницей сахарного диабета. В ее основе лежит аномальное функционирование инсулинового аппарата: заболевание обусловлено тем, что в ответ на быстрое всасывание в кровь легкоусвояемого продукта (сахарозы), поджелудочная же- леза продуцирует избыточное количество инсулина, что вызывает гипоглике- мическое состояние. Постоянная нагрузка на инсулиновый аппарат приводит к нарушению в его работе. Заболевание проявляется нервозностью, головными болями, бессонницей, расстройством пищеварения, депрессией, агрессивным состоянием. Обмен жиров и липидов В норме у человека на долю жира приходится 10–20%, а при ожирении до 50 % от всей массы тела. Жиры выполняют пластическую роль, они необходи- мы для построения тканей, используются как источник стероидных гормонов. Жиры играют энергетическую роль – до 33% энергии образуется за счет их окисления. Кроме этого, жиры являются источником эндогенной воды: из 100 г жира образуется 107 г воды. В организме жир находится в 2-х видах: структурном и резервном. Ре- зервный жир расположен в подкожной клетчатке, в брюшной полости, около почек. Избыточное питание, гиподинамия приводят к увеличению резервного жира. Пищевой жир бывает животного и растительного происхождения. Жир животного происхождения представлен триглицеридами, в состав которых входят жирные кислоты, например, стеариновая. Жиры растительного происхо- ждения содержат ненасыщенные жирные кислоты (линолевая, олеиновая и т. д.). Биологическая ценность пищевых жиров определяется наличием в них незаменимых жирных кислот, способностью перевариваться и всасываться в ЖКТ. Наиболее ценными считаются те жиры, которые содержат линолевую и другие непредельные ненасыщенные жирные кислоты. Все природные жиры 7 хорошо перевариваются. В сутки необходимо поступление в организм 80–100 г жира, из них 25–30 г растительного масла, 30–35 г сливочного масла. При не- достаточном поступлении жира в организме снижаются иммунные свойства, снижается продукция стероидных гормонов и т. д. Методы исследования энергообмена Величину ОО определяют методами прямой и непрямой калоримет- рии, рассчитывают по уравнениям с учетом пола, возраста и веса. При прямой калориметрии тепло, выделяемое организмом, учитывают в единицу времени в особой теплоизоляционной камере – калориметре (рис. 1). Рис. 1. Биокалориметр Этуотера-Бенедикта (схема) Прямая калориметрия основана на непосредственном учете в биокалори- метрах количества тепла, выделенного организмом. Биокалориметр представ- ляет собой герметизированную и хорошо теплоизолированную от внешней сре- ды камеру. В камере по трубкам циркулирует вода. Тепло, выделяемое находя- 8 щимся в камере человеком или животным, нагревает циркулирующую воду. По количеству протекающей воды и изменению ее температуры рассчитывают количество выделенного организмом тепла. Одновременно в биокалориметр подается О2 и поглощается избыток СО2 и водяных паров. Продуцируемое организмом тепло измеряют с помощью тер- мометра (1, 2) по нагреванию воды, протекающей по трубкам в камере. Количе- ство протекающей воды измеряют в баке (3). Через окно (4) подают пищу и удаляют экскременты. С помощью насоса (5) воздух извлекается из камеры и его прогоняют через баки с серной кислотой (6 и 8) – для поглощения воды и через бак с натронной известью (7) – для поглощения СО2. Кислород подают в камеру из баллонов (10) через газовые часы (11). Давление в камере поддержи- вают на постоянном уровне с помощью сосуда с резиновой мембраной (9). Этот метод является очень точным, однако ввиду громоздкости и сложности исполь- зуется только для специальных целей. Учитывая, что в основе теплообразования в организме лежат окислитель- ные процессы, при которых потребляется кислород и образуется углекислый газ, можно использовать косвенное непрямое, определение теплообразования в организме по его газообмену (рис. 2). В основе метода лежит предположение о том, что при сгорании 1 г пище- вого продукта в организме поглощается такое же количество кислорода и выде- ляется такое же количество углекислого газа, теплоты и воды, как при сгорании этого продукта на воздухе. Производится расчет дыхательного коэффициента (КД). Под ним понимается отношение объема выделенного СО2 к объему по- глощенного О2. С6 Н12 О6 + 6О2 = 6СО2 + 6Н2 О + 675 ккал. Однако полученную величину считают приблизительной, т. к. полного окисления в организме не происходит. 9 Рис. 2. Респираторный аппарат Шетерникова (схема) К – камера; Б – баллон с кислородом; Н – мотор, выкачивающий воздух из камеры; З – змеевик для охлаждения воздуха; Щ – сосуд, наполненный раствором щелочи для поглоще- ния углекислого газа; В – баллон для поглощения водяных паров хлоридом кальция; Т – тер- мометры. Слева устройство для автоматической подачи кислорода в камеру и поддержания постоянства давления в ней Выполнение лабораторной работы Работа 1. Определение величины должного основного обмена по форму- лам и таблицам. Цель: рассчитать свой «должный» основной обмен двумя способами: по таблицам Гаррис-Бенедикта, зная пол, вес, возраст, рост; по данным поверхности тела. Основной обмен – это расход энергии, необходимый для поддержания жизнедеятельности всех органов и температуры тела. Определяется основной обмен утром, натощак (через 14–16 часов после последнего приема пищи) в по- ложении лежа, при окружающей температуре 18–20оС (температура комфорта) с помощью специальных приборов – метаболиметра или спирометра Крога. Че- ловек в этих условиях расходует примерно 1 ккал на 1 кг веса в час. 10

ФИЗИОЛОГИЯ ОБМЕНА ВЕЩЕСТВ И ЭНЕРГИИ

Обмен веществ в организме. Пластическая и энергетическая роль питательных веществ

Постоянный обмен веществ и энергии между организмом и окружающей средой является необходимым условием его

существования и отражает их единство. Сущность этого обмена заключается в том, что поступающие в организм питательные вещества после пищеварительных превращений используются как пластический материал. Энергия, образующаяся при этих превращениях восполняет энергозатраты организма. Синтез сложных специфичных веществ организма из

простых соединений, всасывающихся в кровь из пищеварительного канала, называется ассимиляцией или анаболизмом, Распад веществ организма до конечных продуктов, сопровождающийся выделением энергии называется диссимиляцией или катаболизмом. Два этих процесса неразрывно связаны. "Ассимиляция обеспечивает аккумуляцию энергии, а энергия выделяющаяся при диссимиляции необходима для синтеза веществ. Анаболизм и катаболизм объединены в единый процесс с помощью АТ.Ф и НАДФ. С их помощью энергия образующаяся в результате дис­симиляции передается для процессов ассимиляции. Белки в основном являются пластическим материалом. Они входят в состав клеточных мембран, органел. Белковые молекулы постоянно обновляются. Но это обновление происходит не только за счет белков пищи, но и посредством реутилизации собственных белков организма. Из 20 аминокислот, образующих белки 10 являются незаменимыми. Т.е. не могут образовываться в организме. Конечными продуктами распада белков являются такие азотсодержащие соединения, как мочевина, мочевая кислота, креатинин. Состояние белкового обмена оценивается по азотистому балансу. Это соотношение количества азота поступающего с белками пищи и выделенного из организма с азотсодержащими продуктами обмена. В белке содержится около 16 г азота. Следовательно выделение 1 г азота свидетельствует о распаде в организме 6,25 г белка. Если количество выделяемого азота равно количеству поглощенного организмом имеет место азотистое равновесие. Если поступившего.азота больше, чем выделенного, это называется положительным.азотистым балансом. В организме происходит задержка или ретенция азота. Положи­тельный азотистый баланс наблюдается при росте организма, при выздоровлении после тяжелых заболевания, сопровождавшихся похуданием и после длительного голодания. Когда количество азота, выделенного организмом больше, чем поступившего, имеет место отрицательный азотистый баланс. Его возникновение объясняется распадом собственных белков организма. Он возникает при голодании, отсутствии в пище незаменимых аминокислот, нарушениях переваривания и всасывания белка, тяжелых заболеваниях. Количество белка которое полностью обес­печивает потребности организма называется белковым оптимумом. Минимальное, обеспечивающее лишь сохранение азотистого баланса - белковым минимумом. ВОЗ рекомендует потребление белка не менее 0,75 г на кг веса в сутки. Энергетическая роль белков относительно небольшая.

Жирами организма являются триглицериды, фосфолипиды и стерины. Они также имеют определенную пластическую роль, так как фосфолипиды, холестерин, жирные кислоты входят в состав клеточных мембран и органел. Основная их роль энергетическая. При окислении липидов выделяется наибольшее количество энергии, поэтому около половины энергозатрат организма обеспечивается липидами. Кроме того, они являются аккумулятором энергии в организме, потому что откладываются в жировых депо и используются по мере необходимости. Жир депо составляют около 15% веса тела. Покрывая внутренние органы, жировая ткань выполняет и пластическую функцию. Например, околопочечный жир способствует фиксации почек и предохранению их от механических воздействий. Липиды явля­ются источниками воды, потому что при окислении 100 г жира образуется около 100 г воды. Особую функцию выполняет бурый жир, располагающийся вдоль крупных сосудов. Содержащийся в его жировых клетках полипептид тормозит ре-синтез АТФ за счет липидов. В результате резко усиливается теплопродукция. Большое значение имеют незаменимые жирные кислоты - линолевая, линоленовая и арахидоновая. Они не образуются в организме. Без них невозможен синтез фосфолипидов клеток, образование простагландинов и т.д. При их отсутствии задерживается рост и развитие организма.

Углеводы в основном играют энергетическую роль так как служат основным источником энергии для "клеток.

Потребности нейронов покрываются исключительно глюкозой. Углеводы аккумулируются в виде гликогена в печени

и мышцах. Углеводы имеют определенное пластическое значение. Глюкоза необходима для образования нуклеотидов

и синтеза некоторых аминокислот.

Методы измерения энергетический баланса организма

Соотношение между количеством энергии, поступившей в организм с пищей, и энергии, выделенной организмом во

внешнюю среду называется энергетическим балансом.организма. Существует 2 метода определения выделяемой

организмом энергии.

1. Прямая калориметрия. Принцип прямой калориметрии основан на том, что все виды энергии в конечном итоге переходят в тепловую. Поэтому при прямой калориметрии определяют количество тепла выделяемого организмом в окружающую среду за единицу времени. Для этого используют специальные камеры с хорошей теплоизоляцией и системой теплообменных труб, в которых циркулирует и нагревается вода.

2. Непрямая калориметрия. Она заключается в определении соотношения выделенного углекислого газа и поглощенного кислорода за единицу времени. Т.е. полном газовом анализе. Это соотношение называется дыхательным коэффициентом (ДК). УС02 ДК=-У02

Величина дыхательного коэффициента определяется тем, какое вещество окисляется в клетках организма. Например в молекуле углеводов атомов кислорода много, Поэтому на их окисление кислорода идет меньше и их дыхательный коэффициент равен 1. В молекуле липидов кислорода значительно меньше, поэтому дыхательный коэффициент при их окислении 0,7. Дыхательный коэффициент белков 0,8. При смешанном питании его величина 0,85-0,9. Дыхательный коэффициент становится больше 1 при тяжелой физической работе, ацидозе, гипервентиляции и преобразовании в организме углеводов в жиры. Меньше 0,7 он бывает при переходе жиров в углеводы. Исходя из дыхательного коэффициента рассчитывается калорический эквивалент кислорода, т.е. количество энергии выделяемой организмом при потреблении 1 л кислорода. Его величина также зависит от характера окисляемых веществ. Для углеводов он составляет 5 ккал, белков 4,5 ккал, жиров 4,7 ккал. Непрямая калориметрия в клинике производится с помощью аппаратов "Метатест-2", "Спиролит".

величина поступившей в организм энергии определяется количеством и энергетической ценностью пищевых веществ. Их энергетическую ценность определяют путем сжигания в бомбе Бертло в атмосфере чистого кислорода. Таким путем получают физический калорический коэффициент. Для белков он равен 5,8 ккал/г, углеводов 4,1 ккал/г, жиров 9,3 ккал/г. Для расчетов используют физиологический калорический коэффициент. Для углеводов и жиров он соответствует физическому, а для белков составляет 4,1 ккал/г. Его меньшая величина для белков объясняется тем, что в организме они расщепляются не до углекислого газа и воды, а да азотсодержащих продуктов. Основной обмен

Количество энергии, которое затрачивается организмом на выполнение жизненно важных функций называется основным обменом. Это затраты энергии на поддержание постоянства температуры тела, работу внутренних органов, нервной системы, желез. Основной обмен измеряется методами прямой и непрямой калориметрии при базисных условиях, т.е. лежа с расслабленными мышцами, при температуре комфорта, натощак. Согласно закону поверхности, сформулированному в 19 веке Рубнером и Рише, величина основного прямопропорциональна площади поверхности тела. Это связано с тем, что наибольшее количество энергии тратится на поддержание постоянства температуры тела. Помимо этого на величину основного обмена влияют пол, возраст, условия окружающей среды, характер питания, со­стояние желез внутренней секреции, нервной системы. У мужчин основной обмен на 10% больше, чем у женщин. У детей его величина относительно веса тела больше, чем в зрелом возрасте, а у пожилых наоборот меньше. В холодном климате или зимой он возрастает, летом снижается. При гипертиреозе он значительно увеличивается, а гипотиреозе снижается. В среднем величина основного обмена у мужчин 1700 ккал/сут., а у женщин 1550.

Общий обмен энергии

Общий обмен энергии это сумма основного обмена, рабочей прибавки и энергии специфически динамического действия пищи. Рабочая прибавка это энергетические затраты на физическую и умственную работу. По характеру производственной деятельности и энергозатратам выделяют следующие группы работающих:

1. Лица умственного труда (преподаватели, студенты, врачи и т.д.). Их энергозатраты 2200-3300 ккал/сут.

2. Работники занятые механизированным трудом (сборщики на конвейере). 2350-3500 ккал/сут.

3. Лица занятые частично механизированным трудом (шофера). 2500-3700 ккал/сут. .

    Занятые тяжелым немеханизированным трудом (грузчики). 2900-4200 ккал/сут. Специфически динамическое действие пищи это энергозатраты на усвоение питательных веществ. Наиболее выражено это действие у белков, меньше у жиров и углеводов. В частности белки повышают энергетический обмен на 30%, а жиры и углеводы на 15%. Физиологические основы питания.

    Режимы питания. В зависимости от возраста, пола, профессии потребление белков, жиров и углеводов должно составлять:

В зависимости от возраста, пола, проф.

потребление белков, жиров и углеводов должно составлять:

М 1-1У групп

ЖМУ групп

82-92 г77-102 г

Углеводы


В прошлом веке Рубнер сформулировал закон изодинамии, согласно которому пищевые вещества могут взаимозаменяться по своей энергетической ценности. Однако он имеет относительное значение, так как белки, выполняющие пластическую роль, не могут синтезироваться из других веществ. Это же касается незаменимых жирных кислот. Поэтому требуется питание сбалансированное по всем питательным веществам. Кроме того необходимо учитывать усвояемость пищи. Это соотношение всосавшихся и выделившихся с калом питательных веществ. Наиболее легко усваиваются животные продукты. Поэтому животный белок должен составлять не менее 50% суточного белкового рациона, а жиры не более 70% жирового.

Под режимом питания подразумевается кратность приема пищи и распределение ее калорийности на каждый прием. При трехразовом питании на завтрак должно приходится 30% калорийности суточного рациона, обед 50%, ужин 20%. При более физиологичном четырехразовом, на завтрак 30%, обед 40%, полдник 10%, ужин 20%. Интервал между завтраком и обедом не более 5 часов, а ужин должен быть не менее чем за 3 часа до сна. Часы приема пищи должны быть постоянными.

Обмен воды и минеральных веществ

Содержание воды в организме в среднем 73%. Водный баланс организма поддерживается путем равенства потребляемой и выделяемой воды. Суточная потребность в воде составляет 20-40 мл/кг веса. С жидкостями поступает около 1200 мл воды, пищей 900 мл и 300 мл образуется в процессе окисления питательных веществ. Минимальная потребность в воде составляет 1700 мл. При недостатке воды наступает дегидратация и если ее количество в организме снижается на 20% наступает смерть. Избыток воды сопровождается водной интоксикацией с возбуждением ЦНС и судорогами.

Натрий, калий, кальций, хлор необходимы для нормального функционирования всех клеток, в частности обеспечения механизмов формирования мембранного потенциала и потенциалов действия. Суточная потребность в натрии и калии 2-3 г, кальции 0,8 г, хлоре 3-5 г. Большое количество кальция находится в костях. Кроме того он нужен для свертывания крови, регуляции клеточного метаболизма. Основная масса фосфора также сосредоточена в костях. Одновременно входит а состав фосфолипидов мембран, участвует в процессах метаболизма. Суточная потребность в нем 0,8 г. Большая часть железа содержится в гемоглобине и миоглобине. Оно обеспечивает связывание кислорода. Фтор входит в состав эмали зубов. Сера в состав белков и витаминов. Цинк является компонентом ряда ферментов. Кобальт и медь необходимы для эритропоэза. Потребность во всех этих микроэлементах от десятков до сотен мг в сутки.

Физиологии и этологии животныхКонтрольная работа >> Медицина, здоровье

Нервные центры регуляции всех видов обмена веществ и энергии , голода и насыщения, терморегуляции, ... В. И., Практическое руководство по физиологии с.-х. животных, М.. 1976 Георгиевский В.И. Физиология сельскохозяйственных животных. – М.: Агропромиздат...

  • Физиология микроорганизмов. Химический состав микробов

    Контрольная работа >> Биология

    Физиология микроорганизмов Микроорганизмам, как и всем... активный перенос обязательно сопровождается затратой энергии . Расходуется аденозинтрифосфат (АТФ), накапливаемый... , основываясь на особенностях его обмена веществ . По своему назначению дифференциально- ...

  • Физиология и биохимия созревания и старения плодов

    Реферат >> Биология

    Университет – МСХА имени К.А.Тимирязева Кафедра физиологии растений Физиология и биохимия созревания и старения плодов... ; продолжение развития и снижение потенциальной энергии ; активизация обмена веществ ; усиление синтеза этилена; начало деструктивных...

  • Энергетический обмен присущ каждой живой клетке, сопровождая ее функциональный и структурный метаболизм. Единицей измерения энергообмена является 1 ккал (4,19 кДж). Коэффициент полезного действия определяется отношением внешней работы к выработанной энергии. Для изолированной мышцы он составляет около 35% . Мышечная работа целого организма редко дает КПД больше 25%.

    Различают следующие уровни метаболической активности :

    1. Уровень энергообмена, несовместимый с жизнью . По отношению к организму в целом он не превышает 15% максимального в данных условиях энергообмена. Однако надо помнить, что для организма в целом уровень обменных процессов имеет иное значение, чем для изолированных органов, ибо снижение активности работы сердца ведет к смерти организма даже когда обмен в самом сердце снижается на 50%.

    2. Уровень подержания целостности . Он не может быть ниже 15% всей активности.

    3. Уровень готовности к активному действию . Обычно составляет 50% энергообмена.

    При снижении величины энергообмена ниже 50% происходит ухудшение и снижение функциональной активности организма.

    Интенсивность энергообмена зависит от характера деятельности. В зависимости от этого выделяют понятия основной обмен и рабочий обмен . Однако, прежде чем нам рассматривать эти понятия, обратимся к методам исследования энергетических затрат организма.

    Их два - прямая калориметрия и непрямая калориметрия . Куда и в каком виде тратится энергия в организме? Понятно, что прежде всего на мышечную работу, затем - на проведение электрических импульсов, на работу химических насосов, на синтез продуктов, на работу сердца и внутренних органов. В этом плане в организме встречается и механическая, и электрическая и разные виды химической энергии.

    Для изучения энергетических затрат методом прямой калориметрии надо любыми возможными способами непосредственно измерить эту энергию, которую организм, в соответствии с законом сохранения энергии, преобразует тепло и выделяет о внешнюю следу. Такое исследование возможно в специальных камерах, разработанных русским ученым Шатерниковым. В них создаются все условия для жизнеобеспечения человека или животного в течение суток и для измерения всего тепла, выделенного организмом за это время. Это длительная и дорогостоящая процедура, поэтом она в клинике н используется, хотя применяется в некоторых научных лабораториях.

    Остаются косвенные методы измерения энергозатрат. Известно, что в результате окисления 1 г белков и углеводов освобождается 4,1 ккал тепла, а при окислении 1г жиров - 9,3 ккал. Зная количество принятых за определенный срок с пищей белков, жиров и углеводов, можно было бы рассчитать, сколько за это время поступило в организм энергии (а значить и выделилось, в соответствии с законом сохранения энергии). Этот метод учета общей величины энергозатрат организма называется методом пищевых рационов. Он не требует никакой аппаратуры, производится лишь учет количества съеденной пищи и по таблицам подчитывается ее калорийность.

    Однако этот метод не совсем точен, ибо постоянно может быть отложение воспринятых веществ в депо, или, наоборот, присоединение к принятой пище ранее депонированных продуктов. Поэтому метод пищевых рационов применяется чаще всего лишь для контроля за общей калорийностью и энергетической ценностью пищи.

    Более точным методом при определении энергетических затрат является метод исследования газообмена, который тоже относится к непрямой калориметрии. Из-за простоты, портативность аппаратуры и быстроты определения он имеет весьма широкое распространение. Основан метод газообмена на том, что между количеством освобожденного к организмом тепла, выделением углекислого газа и поглощением кислорода существуют точные соотношения.

    Исследования теплоты сжигания каждого рода пищевых веществ в калориметрической бомбе показывают. что определенному количеству поглощенного кислорода и выделенного углекислого газа соответствует и определенное количество калорий выделенного тепла. Зная состав исследуемого вещества, нетрудно рассчитать, сколько кислорода необходимо для его полного окисления до углекислого газа и воды. С учетом этих количеств для каждого вещества определяется калорический эквивалент кислорода (КЭК ), т.е. количество тепла, освобождающееся при полном окислении его в условиях поглощения 1л кислорода. КЭК для углеводов равен 5 ккал, для жиров - 4,7 ккал, для белков - около 4,85 ккал. Это значит, что при окислении углеводов при потреблении каждого литра кислорода выделятся 5 ккал тепла.

    Знание величины КЭК позволяет точно устанавливать величину энергетических затрат путем определения количества кислорода, которое за данный промежуток времени потреблено организмом.

    Однако, чтобы это было возможно, необходимо знать еще, какие вещества в данный момент времени окисляются в организме. Это возможно определить по т.н. дыхательному коэффициенту . Дело в том, что в зависимости от химического состава окисляющегося вещества соотношение выделенного углекислого газа и потребленного кислорода различно. Это отношение и носит название дыхательного коэффициента (ДК). При окислении углеводов он равен 1, так как: C6H12O6 +6O2 =6CO2 +6H2O

    Для жиров ДК равен 0,7, для белков 0,85. Поэтому, зная величины выделенного и поглощенного газа, легко рассчитать ДК, а зная его - применить нужный КЭК.

    Методика изучения газообмена в принципе состоит в определении состава вдыхаемого и выдыхаемого воздуха и их объемов, и вычислении указанных коэффициентов.

    Однако, поскольку люди питаются в основном смешанной пищей, то путем многих статистических исследований показано, что в среднем при общепринятом европейском рационе ДК равен 0,9 без особо больших колебаний. Если принять ДК за 0,9, тогда не надо определять количество поглощенного углекислого газа, достаточно знать величину поглощенного кислорода. Это делается легко с помощью метода Крога в приборах метаболиметрах или спирометрах. С конкретной методикой Вы познакомитесь на занятиях.

    В 60-х годах прошлого столетия Биддером и Шмидтом было установлено, что расход энергии в покое отличается значительным постоянством. Оказалось, что у человека и животных наиболее низкие величины расхода энергии наблюдаются при исключении мышечной деятельности и приема пищи, и при температуре среды, соответствующей минимальной активности механизмов терморегуляции. Этот уровень получил название основного обмена.

    Для определения основного обмена (ОО ) обычно производят исследование газообмена в утренние часы, через 14 часов после последнего приема пищи при температуре помещения 20-22оС. Исследуемый должен лежать совершенно спокойно, в удобной для него позе. Лучше всего исследование производить в постели, сразу после пробуждения. Исследование продолжается 10-15 минут.

    У лиц одинакового роста, веса, пола и возраста основной обмен примерно одинаков и колеблется не более чем +-15%. Зная вес тела, рост и возраст, можно с помощью специальных формул и таблиц определить интенсивность должного основного обмена (ДОО) у людей. Истинные величины ОО не должны отличаться от ДОО более чем на 15%. Изменения ОО наблюдаются чаще всего при гормональных нарушениях (щитовидной и др. желез) и ряде других заболеваний.

    Если пересчитать интенсивность ОО на 1 кг веса тела, то она весьма различна у животных разных видов и людей разного веса, роста и возраста. При этом у детей она выше, чем у взрослых. Если же произвести перерасчет интенсивности ОО на 1 м2 поверхности тела, то полученные результаты у разных животных и людей будут отличаться значительно меньше. Это дало в свое время повод Рубнеру сформулировать т.н. "правило поверхности ", согласно которому затраты энергии теплокровных животных пропорциональны поверхности тела.

    Однако это не абсолютно верно. Интенсивность обмена веществ может значительно различаться у двух индивидуумов с одинаковой поверхностью тела, так как уровень окислительных процессов определяется не столько теплоотдачей с поверхности тела, сколько теплопродукцией клеток, зависящей от вида животного и состояния организма, которое, в свою очередь, обусловлено деятельностью его нервной системы и эндокринного аппарата. В связи с этим большее значение имеет т.н. "правило скелетных мышц " Аршавского, которое утверждает зависимость ОО от объема мышечной массы тела.

    Определенные изменения расхода энергии отмечаются с возрастом. Самый высокий уровень обмена - у новорожденных и детей до года, затем эти величины снижаются. К 10-12 годам уровень обмена достигает показателей взрослого человека, однако до полового созревания у девочек он больше, чем у мальчиков.

    Куда идет энергия в условиях основного обмена? В организме, находящемся в состоянии полного покоя, никогда не прекращается работа сердца, дыхательных мышц, деятельность почек, печени. Некоторое напряжение скелетных мышц (тонус) сохраняется и при полном расслаблении мускулатуры во время лежания и во сне. Считают, что из всего обмена веществ приблизительно 4-6% приходится на сердечную мышцу, 4-6% - на почки, 20-30% - на печень и органы пищеварения, 2-5% - на нервную систему и 40-50% - на скелетную мускулатуру.

    Уровень обмена веществ неразрывно связан с процессами питания. На обмен веществ оказывают влияние как отдельные примы пищи, так и общее количество принятой с пищей веществ, а также их качественный состав. Всякий прием пищи вызывает повышение обмена веществ в организме, находящемся в условиях мышечного покоя. Это повышение обмена называется специфически динамическим действием пищи (СДП).

    Наибольшее СДП оказывает прием белков. Повышение обмена может достигать при этом 30-40% общей энергетической ценности введенного в организм белка. Для углеводов СДП составляет 4-6%, для жиров - еще меньше. При питании смешанной пищей СДП составляет 10-12% ОО.

    Причина СДП двоякая. 60% ее величины приходится на условно-рефлекторный компонент (доказывается опытом мнимого кормления). 40% приходится на работу пищеварительного аппарата. У новорожденных детей еще до первого кормления сосание соски-пустышки вызывает увеличение обмена. Очевидно, влияние акта еды на уровень обмена является безусловным рефлексом, биологическое значение которого заключается в том, что организм получает энергию для деятельности (возможно, из депо) задолго до того, когда принятые с пищей вещества реально поступят в метаболический котел. Если бы такого механизма не существовало, выбившийся из сил голодный человек смог бы активно передвигаться только через 3-4 часа после кормления. В реальной жизни он может это делать сразу после еды.

    При мышечной деятельности обмен веществ в мускулатуре и в организме в целом сильно возрастает. Так, по сравнению с уровнем обмена лежа сидение вызывает повышение обмена на 12%, стояние - на 20%, ходьба - на 80-100%, бег - на 300-400%. Весьма интенсивная работа может повысить обмен веществ в 10 раз.

    По степени энергетических затрат можно распределить представителей разных профессий на 4 группы. Суточный расход энергии этих групп такой:

    1 группа - работники умственного труда (ученые, врачи, инженеры, студенты и т.п.) - 3000 ккал/сут.;

    2 группа - работники механизированных производств (токари, водители, текстильщики и т.п.) - 3500 ккал/сут.;

    3 группа - рабочие, занятые физическим трудом (слесари, истопники, с/х рабочие и т.п.) - 4000 ккал/сут.;

    4 группа - рабочие тяжелого физического труда (грузчики, землекопы и т.п.) - 4500 ккал/сут. и более.

    При умственном труде энергетические затраты значительно ниже, чем при физическом. Однако в гипнозе может быть большое повышение.

    Принципы составления пищевых рационов . В зависимости от энергетических затрат стоит задача составления правильных пищевых рационов. Количество принятых с пищей калорий должно соответствовать энергетическим тратам организма.

    Необходимые количества энергии могут быть получены организмом за счет окисления и белков, и жиров, и углеводов. Однако, кроме энергетических нужд организма надо учитывать и пластические нужды, надо помнить и о суточной потребности каждого их питательных веществ.

    Особенно важен вопрос о нормах белка в питании человека. Некоторые западные исследователи считают, что количество белка в пище должно быть таково, чтобы не нарушалось азотистое равновесие. Наши ученые считают, что всегда должен быть какой-то белковый резерв в организме, поэтому при составлении рациона надо ориентироваться не на белковый максимум, а на белковый оптимум, т.е. на то количество белка, которое полностью обеспечивает потребности организма, хорошее самочувствие, высокую работоспособность, достаточную сопротивляемость инфекциям, а для детей и потребности роста. Ежесуточный прием с пищей взрослым человеком в среднем 80-100 г. белка полностью удовлетворяют этим требованиям. Не менее 30% белка должно быть животного происхождения.

    Для детей суточная норма белка на 1 кг веса должна быть повышена. Для 1-3 лет она составляет 55 г, 4-6 лет - 72 г., 7-9 лет - 89 г, 10-15 лет 100-106 г.

    Пищевой рацион должен включать не менее 60 г. жиров и 400-500 г. углеводов. У взрослых при трехразовом питании 30% рациона должно приходиться на завтрак, 40% на обед и 25% на ужин. Необходимо помнить также и о минеральном составе, витаминах. заменимых и незаменимых аминокислотах и др.

    Таким образом, при составлении пищевого рациона необходимо руководствоваться следующими принципами:

    1. Соответствие энергетическим затратам.

    2. Удовлетворение нормы белков, жиров и углеводов в питании.

    3. Учет усвояемости пищевых веществ.

    4. Минеральный и витаминный состав.

    5. Учет состояния организма и способов приготовления пищи (диетология).

    6. Правильное распределение рациона по часам суток.

    7. Разнообразие пищи и ее органолептика.

    8. Учет потребностей роста.

    Обменом веществ и энергии называется совокупность химических и физических превращений, происходящих в живом организме и обеспечивающих его жизнедеятельность. Ф. Энгельс назвал обмен веществ, или метаболизм, основным признаком жизни. Энергия, освобождающаяся в процессе метаболизма, необходима для совершения работы, роста, развития и обеспечения структуры и функций всех клеточных элементов.

    Обмен веществ и энергии составляют единое целое, и они подчиняются универсальному закону природы - закону сохранения материи и энергии .

    Метаболизм обеспечивает восстановление постоянно теряемых организмом веществ (вода, минеральные соединения) и распадающихся органических соединений, входящих в состав тканей и тканевых жидкостей, снабжает организм энергией, необходимой для движения, секреции, экскреции, образования ряда веществ и других проявлений жизни.

    Обмен веществ складывается из процессов ассимиляции и диссимиляции. Совокупность синтетических процессов, при которых расходуется энергия, носит название ассимиляции, пластического обмена или анаболизма.

    Совокупность процессов распада соединений, протекающих с высвобождением энергии, получила название диссимиляции, энергетического процесса или катаболизма.

    Единственным источником энергии для человека и животных является окисление органических веществ, поступающих с пищей. При расщеплении пищевых продуктов до конечных элементов - углекислоты и воды, выделяется энергия химических связей. Одна часть выделившейся энергии переходит в механическую работу, выполняемую мышцами, другая часть используется для синтеза более сложных соединений или запасается в специальных макроэргических соединениях.

    Макроэргическими соединениями называют вещества, в которых накапливается много энергии. В организме человека и животных роль макроэргических соединений выполняют аденозинтрифосфорная кислота (АТФ) и креатинфосфат (КФ).

    Процессы ассимиляции (анаболизм) и диссимиляции (катаболизм) неразрывно связаны между собой. В разные периоды жизни организма наблюдаются различные соотношения между процессами ассимиляции и диссимиляции. В период роста преобладает ассимиляция; во взрослом организме устанавливается относительное равновесие между катаболизмом и анаболизмом; в старческом возрасте ассимиляция отстает от процессов диссимиляции. Нарушение нормальных соотношений между процессами катаболизма и анаболизма наблюдается при болезненных состояниях.

    Обмен белков

    Белками (протеинами) называют высокомолекулярные соединения, построенные из аминокислот. Белки выполняют многочисленные функции в организме.

    Структурная , или пластическая, функция белков заключается в том, что протеины являются главной составной частью всех клеток и межклеточных структур. Белки также входят в состав основного вещества хрящей, костей и кожи. Биосинтез белков определяет рост и развитие организма.

    Каталитическая , или ферментная, функция белков состоит в том, что протеины способны ускорять биохимические реакции в организме. Все известные в настоящее время ферменты являются белками. От активности белков-ферментов зависит осуществление всех видов обмена веществ в организме.

    Защитная функция белков проявляется в образовании иммунных тел (антител) при поступлении в организм чужеродного белка (например, бактерий). Кроме того, белки связывают токсины и яды, попадающие в организм, и обеспечивают свертывание крови и остановку кровотечения при ранениях.

    Транспортная функция белков заключается в том, что белки принимают участие в переносе многих веществ. Так, снабжение клеток кислородом и удаление углекислого газа из организма осуществляется сложным белком-гемоглобином, липопротеиды обеспечивают транспорт жиров и т. д.

    Передача наследственных свойств , в которой ведущую роль играют нуклеопротеиды, является одной из важнейших функций белков. В состав нуклеопротеидов входят нуклеиновые кислоты. Различают два основных типа нуклеиновых кислот: рибонуклеиновые кислоты (РНК), содержащие аденин, цитозин, урацил, рибозу и фосфорную кислоту, и дезоксирибонуклеиновые кислоты (ДНК), в состав которых входят дезоксирибоза вместо рибозы и тимин вместо урацила. Важнейшей биологической функцией нуклеиновых кислот является их участие в биосинтезе белков. Нуклеиновые кислоты не только необходимы для самого процесса биосинтеза белка, они обеспечивают также образование белков, специфичных для данного вида и органа.

    Регуляторная функция белков направлена на поддержание биологических констант в организме, что обеспечивается регулирующими влияниями различных гормонов белковой природы.

    Энергетическая роль белков состоит в обеспечении энергией всех жизненных процессов в организме животных и человека. Белки-ферменты определяют все стороны обмена веществ и образование энергии не только из самих протеинов, но и из углеводов и жиров. При окислении 1 г белка в среднем освобождается энергия, равная 16,7 кДж (4,0 ккал) * .

    * (Джоуль (Дж) - работа, которую совершает постоянная сила, равная 1 Н (ньютон), на пути в 1 м, пройденном телом под действием этой силы по направлению, совпадающему с направлением силы; 1 кал.=4,1868 Дж. )

    Индивидуальная специфичность белков . Белковые тела различных людей имеют индивидуальную специфичность. Это подтверждается, в частности, образованием иммунных тел в организме человека при пересадке органов, в результате чего может возникнуть реакция отторжения пересаженного органа.

    Индивидуальные различия в составе белков передаются но наследству. Нарушение генетического кода в ряде случаев может явиться причиной тяжелых наследственных заболеваний.

    Потребность в белках . В организме постоянно происходит распад и синтез белков. Единственным источником синтеза нового белка являются белки пищи. После расщепления белков ферментами до аминокислот в пищеварительном тракте в тонком кишечнике происходит их всасывание. Одновременно с аминокислотами могут частично всасываться и простейшие пептиды. Из аминокислот и простейших пептидов клетки синтезируют собственный белок, который характерен только для данного организма.

    Белки не могут быть заменены другими пищевыми веществами, так как их синтез в организме возможен только из аминокислот. Вместе с тем белок может замещать собой жиры и углеводы, т. е. использоваться для синтеза этих соединений.

    Человек получает белок с пищей. При введении чужеродных белковых веществ непосредственно в кровь, минуя пищеварительный тракт, они не только не могут быть использованы организмом, но и приводят к ряду серьезных осложнений (повышение температуры, судороги и другие явления). При повторном введении чужеродного белка в кровь через 15-20 дней может наступить смерть.

    Биологическая ценность белков . В разных природных источниках белка (растительных и животных) насчитывается более 80 аминокислот. Однако в пищевых продуктах, которые использует человек, содержится только 20 аминокислот. Установлено, что не все аминокислоты, входящие в состав белков, являются равноценными для человека. Некоторые аминокислоты не могут синтезироваться в организме человека и должны обязательно поступать с пищей в готовом виде. Эти аминокислоты принято называть незаменимыми, или жизненно необходимыми . К ним относятся валин, метионин, треонин, лейцин, изолейцин, фенилаланин, триптофан и лизин , а у детей еще аргинин и гистидин . Недостаток незаменимых кислот в пище приводит к нарушениям белкового обмена в организме.

    Белки содержат различные аминокислоты и в разных соотношениях. В состав пищи животного происхождения входит больше незаменимых аминокислот, чем в состав растительной пищи. Белки, содержащие весь необходимый набор аминокислот, называют биологически полноценными . Наиболее высока биологическая ценность белков молока, яиц, рыбы, мяса.Биологически неполноценными называют белки, в составе которых отсутствует хотя бы одна аминокислота, которая не может быть синтезирована в организме. Неполноценными белками являются белки кукурузы, пшеницы, ячменя.

    Два или три неполноценных белка, дополняя друг друга, могут обеспечить сбалансированное питание человека. Для нормальной жизнедеятельности организма необходимо, чтобы в пище содержались все необходимые аминокислоты.

    При отсутствии полноценного белкового питания тормозится рост, нарушается формирование скелета. При белковом голодании вначале происходит усиленный распад протеинов скелетной мускулатуры, печени, крови, кишечника, кожи. Аминокислоты, которые при этом освобождаются, используются для синтеза белков центральной нервной системы, миокарда, гормонов. Однако такое перераспределение аминокислот не может восполнить недостаток пищевого белка, и наступает закономерное снижение активности ферментов, нарушаются функции печени, почек и т. д.

    Азотистый баланс . По уровню выведенного из организма азота можно судить о количестве распадающегося в организме белка. Азот является обязательной составной частью белка и продуктов его расщепления - аминокислот. Азот поступает в организм только с белковой пищей, так как в других питательных веществах он не содержится и иными путями в организм не попадает.

    Белки содержат в среднем 16% азота, поэтому по уровню азота в пище можно установить количество потребленного белка. Для этого необходимо количество азота умножить на 6,25 (эту цифру получают при делении 100 на 16). Азот пищи полностью организмом не усваивается. Для точного расчета усвоенного организмом азота нужно определить потери его с калом и полученную цифру вычесть из количества потребленного азота.

    О распавшемся белке в организме судят по содержанию азота в моче, так как азот выводится из организма преимущественно с мочой. Определив содержание азота в моче и умножив полученное значение на 6,25, мы узнаем количество распавшегося белка в организме.

    Азотистым балансом называют разность между количеством азота, содержащегося в пище человека или животного, и его уровнем в выделениях. Различают азотистое равновесие, положительный и отрицательный азотистый баланс.

    Азотистое равновесие - это такое состояние, при котором количество выведенного азота равно количеству поступившего в организм. Азотистое равновесие наблюдается у здорового взрослого человека.

    Положительный азотистый баланс - это состояние, при котором количество азота в выделениях организма значительно меньше, чем содержание его в пище, т. е. наблюдается задержка азота в организме. Положительный азотистый баланс отмечается у детей в связи с усиленным ростом, у женщин во время беременности, при усиленной спортивной тренировке, приводящей к увеличению мышечной ткани, при заживлении массивных ран или выздоровлении после тяжелых заболеваний.

    Отрицательный азотистый баланс отмечается тогда, когда количество выделяющегося азота больше содержания его в пище, поступающей в организм. Отрицательный азотистый баланс наблюдается при белковом голодании, лихорадочных состояниях, нарушениях нейроэндокринной регуляции белкового обмена.

    Распад белка и синтез мочевины . Важнейшими азотистыми продуктами распада белков, которые выделяются с мочой и потом, являются мочевина, мочевая кислота и аммиак.

    Окисление аминокислот происходит путем отщепления от них азота в виде аммиака. Аммиак является очень токсичным веществом для центральной нервной системы и других тканей организма. Однако аммиак обезвреживается в тканях печени и мозга: в печени путем образования мочевины, в ткани мозга за счет превращения в глутамин.

    Значение мочевинообразовательной функции печени в защите организма от отравления аммиаком было показано в 1895 г. И. П. Павловым, М. Ненцким и И. Залесским. Они установили, что в крови печеночной вены содержится втрое меньше аммиака, чем в воротной вене. Следовательно, в печени значительная часть аммиака превращается в мочевину. Удаление печени приводит к гибели собак от аммиачного отравления. Мочевина же представляет собой относительно безвредный продукт и выводится из организма с мочой.

    Часть аммиака обезвреживается путем превращения в глутаминовую кислоту и глутамин. В крови здоровых людей циркулирует лишь незначительное количество аммиака.

    При нарушении синтеза мочевины в печени увеличивается концентрация аммиака, аминокислот и полипептидов в крови, что вызывает возбуждение центральной нервной системы, появление судорог, спутанность сознания и даже коматозное состояние и смерть.

    Обмен жиров

    К жирам относят неоднородные в химическом отношении вещества, которые делят на простые липиды (нейтральные жиры, воски), сложные липиды (фосфолипиды, гликолипиды, сульфолипиды) и стероиды (холестерин и др.). Основная масса липидов представлена в организме человека нейтральными жирами. Нейтральные жиры пищи человека являются важным источником энергии. При окислении 1 г жира выделяется 38,3 кДж (9,3 ккал) энергии. За счет окисления нейтральных жиров образуется около 50% энергии взрослого человека и около 40% энергии грудного ребенка. Нейтральные жиры являются источником эндогенной воды (при окислении 100 г жира освобождается 107-Ю-3 л воды). Они способствуют нормальному обмену воды в организме. Нейтральный жир является обязательной составной частью протоплазмы, ядра и оболочки клетки, выполняя тем самым пластическую функцию. Жир может депонироваться в виде жировых капель, преимущественно в подкожной жировой клетчатке. В этом случае жир предохраняет организм от усиленной отдачи тепла. Если жир отложился в других местах, то он защищает органы от травматических повреждений.

    Суточная потребность взрослого человека в нейтральном жире составляет 70-80 г, детей 3-10 лет- 26-30 г.

    Нейтральные жиры в энергетическом отношении могут быть заменены углеводами. Однако есть ненасыщенные жирные кислоты - линолевая, линоленовая и арахидоновая , которые должны обязательно содержаться в пищевом рационе человека, их называют незаменимыми жирными кислотами . Длительное отсутствие незаменимых жирных кислот в пище приводит к замедлению роста у молодых животных и потере способности к размножению у взрослых. Суточная потребность в этих кислотах для человека составляет 10-12 г.

    Линоленовая и линолевая кислоты в значительном количестве содержатся в растительных жирах, в меньших количествах - в животных жирах. Арахидоновую кислоту обнаруживают только в животных жирах.

    Нейтральные жиры, входящие в состав пищи и тканей человека, представлены главным образом триглицеридами, содержащими жирные кислоты - пальмитиновую, стеариновую, олеиновую, линолевую и линоленовую.

    В нормальных условиях количество жира в организме составляет 10-20% массы тела. При употреблении пищи, содержащей небольшие количества жира, в теле животных и человека откладывается жир, свойственный видовым особенностям данного организма. Если же в питании длительно используют большие количества какого-либо одного вида жира, состав жировых депо меняется.

    В межуточном обмене жиров важная роль принадлежит печени. Печень - основной орган, в котором происходит образованиекетоновых тел (β-оксимасляная и ацетоуксусная кислоты, ацетон). Кетоновые тела используются как источник энергии.

    Фосфо- и гликолипиды входят в состав всех клеток, но главным образом в состав клеток нервной системы. Фосфолипиды синтезируются в кишечной стенке и в печени. Однако только клетки печени способны выделять фосфолипиды в кровь, поэтому печень является практически единственным органом, поддерживающим уровень фосфолипидов в крови. Холестерин и другие стероиды могут поступать с пищей или синтезироваться в организме. Основным местом синтеза холестерина является печень. Неиспользованный холестерин подвергается расщеплению в печени, и продукты его распада превращаются в желчные кислоты. Они поступают в кишечник с желчью. Часть холестерина может проходить непосредственно из крови через стенку толстого кишечника в его полость.

    В жировой ткани нейтральный жир депонируется в виде триглицеридов. По мере необходимости происходит мобилизация жира, т. е. распад триглицеридов с освобождением неэстерифицированных (свободных) жирных кислот .

    Образование жиров из углеводов . Избыточное употребление в пищу углеводов приводит к отложению жира в организме. В норме у человека 25-30% углеводов пищи превращается в жиры.

    Образование жиров из белков . Белки являются пластическим материалом. Организм сберегает эти ценные вещества. Только при чрезвычайных обстоятельствах белки используются для энергетических целей. Превращение белка в жирные кислоты происходит, вероятнее всего, через образование углеводов.

    Обмен углеводов

    Биологическая роль углеводов для организма человека определяется прежде всего их энергетической функцией. Энергетическая ценность 1 г углеводов составляет 15,7 кДж (3,75 ккал). Углеводы являются непосредственным источником энергии для всех клеток организма, играют важную пластическую роль, входя в состав протоплазмы и субклеточных образований, выполняют опорную функцию (кости, хрящи, соединительная ткань).

    Суточная потребность взрослого человека в углеводах составляет около 0,5 кг. Основная часть их (около 70%) окисляется в тканях до воды и углекислого газа. Около 25-28% пищевой глюкозы превращается в жир и только 2-5% ее синтезируется в гликоген - резервный углевод организма.

    Поступившие с пищей сложные углеводы не могут проникнуть через слизистую оболочку кишечника в кровь и лимфу. Единственной формой углеводов, которая может всасываться, являются моносахара.

    Моносахара всасываются главным образом в тонком кишечнике, током крови переносятся в печень и к тканям. В печени из глюкозы синтезируется гликоген. Этот процесс носит название гликогенеза . Гликоген может распадаться до глюкозы. Это явление называют гликогенолизом . В печени возможно новообразование углеводов из продуктов их распада (пировиноградной или молочной кислоты), а также из продуктов распада жиров и белков (кетокислот) - глюконеогенез .

    Гликогенез, гликогенолиз и глюконеогенез, тесно взаимосвязанные и интенсивно протекающие в печени, обеспечивают оптимальный уровень сахара в крови. Так, было показано, что кровь, притекающая к печени, содержащая незначительное количество сахара, способствует переходу гликогена в глюкозу и поступлению ее в сосудистое русло. Кровь с повышенным содержанием глюкозы вызывает в печени процесс гликогенеза, что приводит к уменьшению уровня сахара в крови, оттекающей от железы. Эта способность печени получила название гомеостатического механизма .

    В углеводном обмене организма большое значение имеет мышечная ткань. Мышцы, особенно во время их повышенной деятельности, захватывают из крови большое количество глюкозы. В мышцах, так же как и в печени, синтезируется гликоген. Распад гликогена является одним из источников энергии мышечного сокращения. При распаде мышечного гликогена процесс идет до образования пировиноградной и молочной кислот. Этот процесс называют гликолизом . В фазе отдыха из значительной части молочной кислоты в мышечной ткани происходит ресинтез гликогена. Часть молочной кислоты поступает в кровь. Молочная кислота захватывается другими органами, в частности печенью. В печени из молочной кислоты синтезируется гликоген.

    Таким образом, гликоген печени поставляет в кровь глюкозу, которая захватывается мышцами и используется для синтеза мышечного гликогена. Последний, распадаясь до молочной кислоты, предоставляет материал для синтеза гликогена в печени.

    Головной мозг содержит очень небольшие запасы углеводов и нуждается в постоянном поступлении глюкозы. Мозг поглощает около 69% глюкозы, выделяемой печенью. Глюкоза в тканях мозга преимущественно окисляется, а небольшая часть ее превращается в молочную кислоту. Энергетические расходы мозга покрываются исключительно за счет углеводов. Снижение поступления в мозг глюкозы сопровождается изменением обменных процессов в нервной ткани и нарушением функций мозга.

    Анаэробная и аэробная мобилизация содержащейся в углеводах энергии . В анаэробных (бескислородных) условиях глюкоза превращается в молочную кислоту. В процессе гликолиза одной молекулы глюкозы расходуются две и синтезируются четыре молекулы АТФ, т. е. имеется положительный баланс - две молекулы АТФ. Около 35% всей энергии аккумулируется в АТФ, остальная, большая, часть энергии рассеивается в виде тепла. Энергетически гликолиз не выгоден для организма.

    Окисление глюкозы более эффективно. При аэробном (в присутствии кислорода) окислении из одной молекулы глюкозы образуются 38 молекул АТФ. Эффект дыхания составляет 45-55%. Таким образом, гликолитический процесс сопровождается выделением большого количества тепла, а окисление глюкозы - накоплением энергии в макроэргических связях АТФ .

    Образование углеводов из белков и жиров (глюконеогенез) . В результате превращения аминокислот образуется пировиноградная кислота, при окислении жирных кислот - ацетилкоэнзим А, который может превращаться в пировиноградную кислоту - предшественник глюкозы. Это наиболее важный общий путь биосинтеза углеводов.

    Аминокислоты - предшественники углеводов называют глюкопластическими аминокислотами. К ним относят аланин, аргинин, аспарагиновую кислоту, аспарагин, цистеин, глутаминовую кислоту, глутамин, глицин, гистидин, метионин, пролин, серии, треонин, триптофан, валин.

    Питание животных пищей, богатой белками, часто приводит к отложению гликогена в печени и в жировой ткани.

    Между двумя основными источниками энергии - углеводами и жирами - существует тесная физиологическая взаимосвязь. Повышение содержания глюкозы в крови увеличивает биосинтез триглицеридов и уменьшает распад жиров в жировой ткани. В кровь меньше поступает свободных (неэстерифицированных) жирных кислот. Если возникает гипогликемия, то процесс синтеза триглицеридов тормозится, ускоряется распад жиров и в кровь в большем количестве поступают неэстерифицированные жирные кислоты.

    Доказательством возможности такого превращения жиров в углеводы служат наблюдения над животными, которые находятся в зимней спячке. У этих животных в течение зимы полностью исчезают жировые запасы.


    Похожая информация.


    Обмен веществ в организме. Пластическая и энергетическая роль питательных веществ

    Постоянный обмен веществ и энергии между организмом и окружающей средой является необходимым условием его существования и отражает их единство. Сущность этого обмена заключается в том, что поступающие в организм питательные вещества после пищеварительных превращений используются как пластический материал. Энергия, образующаяся при этих превращениях восполняет энергозатраты организма.

    Синтез сложных специфичных веществ организма из простых соединений, всасывающихся в кровь из пищеварительного канала, называется ассимиляцией или анаболизмом. Распад веществ организма до конечных продуктов, сопровождающийся выделением энергии называется диссимиляцией или катаболизмом. Два этих процесса неразрывно связаны. Ассимиляция обеспечивает аккумуляцию энергии, а энергия выделяющаяся при диссимиляции необходима для синтеза веществ. Анаболизм и катаболизм объединены в единый процесс с помощью АТФ и НАДФ. С их помощью энергия образующаяся в результате диссимиляции передается для процессов ассимиляции.

    Белки в основном являются пластическим материалом. Они входят в состав клеточных мембран, органелл. Белковые молекулы постоянно обновляются. Но это обновление происходит не только за счет белков пищи, но и посредством реутилизации собственных белков организма. Из 20 аминокислот, образующих белки 10 являются незаменимыми. Т.е. не могут образовываться в организме. Конечными продуктами распада белков являются такие азотсодержащие соединения, как мочевина, мочевая кислота, креатинин.

    Состояние белкового обмена оценивается по азотистому балансу . Это соотношение количества азота поступающего с белками пищи и выделенного из организма с азотсодержащими продуктами обмена. В белке содержится около 16 г азота. Следовательно выделение 1 г азота свидетельствует о распаде в организме 6,25 г белка. Если количество выделяемого азота равно количеству поглощенного организмом имеет место азотистое равновесие . Если поступившего азота больше, чем выделенного, это называется положительным азотистым балансом . В организме происходит задержка или ретенция азота. Положительный азотистый баланс наблюдается при росте организма, при выздоровлении после тяжелых заболевания, сопровождавшихся похуданием и после длительного голодания. Когда количество азота, выделенного организмом больше, чем поступившего, имеет место отрицательный азотистый баланс . Его возникновение объясняется распадом собственных белков организма. Он возникает при голодании, отсутствии в пище незаменимых аминокислот, нарушениях переваривания и всасывания белка, тяжелых заболеваниях. Количество белка которое полностью обеспечивает потребности организма называется белковым оптимумом . Минимальное, обеспечивающее лишь сохранение азотистого баланса - белковым минимумом . ВОЗ рекомендует потребление белка не менее 0,75 г на кг веса в сутки. Энергетическая роль белков относительно небольшая.

    Жирами организма являются триглицериды, фосфолипиды и стерины. Они также имеют определенную пластическую роль, так как фосфолипиды, холестерин, жирные кислоты входят в состав клеточных мембран и органелл. Основная их роль энергетическая. При окислении липидов выделяется наибольшее количество энергии, поэтому около половины энергозатрат организма обеспечивается липидами. Кроме того, они являются аккумулятором энергии в организме потому что откладываются в жировых депо и используются по мере необходимости. Жир депо составляют около 15% веса тела. Покрывая внутренние органы жировая ткань выполняет и пластическую функцию. Например околопочечный жир способствует фиксации почек и предохранению их от механических воздействий. Липиды являются источниками воды, потому что при окислении 100 г жира образуется около 100 г воды. Особую функцию выполняет бурый жир, располагающийся вдоль крупных сосудов. Содержащийся в его жировых клетках полипептид тормозит ресинтез АТФ за счет липидов. В результате резко усиливается теплопродукция. Большое значение имеют незаменимые жирные кислоты - линолевая, линоленовая и арахидоновая. Они не образуются в организме. Без них невозможен синтез фосфолипидов клеток, образование простагландинов и т.д. При их отсутствии задерживается рост и развитие организма.

    Углеводы в основном играют энергетическую роль, т.к. служат основным источником энергии для клеток. Потребности нейронов покрываются исключительно глюкозой. Углеводы аккумулируются в виде гликогена в печени и мышцах. Углеводы имеют определенное пластическое значение. Глюкоза необходима для образования нуклеотидов и синтеза некоторых аминокислот.

    Методы измерения энергетического баланса организма

    Соотношение между количеством энергии, поступившей в организм с пищей, и энергии, выделенной организмом во внешнюю среду называется энергетическим балансом организма. Существует 2 метода определения выделяемой организмом энергии.

    1. Прямая калориметрия . Принцип прямой калориметрии основан на том, что все виды энергии в конечном итоге переходят в тепловую. Поэтому при прямой калориметрии определяют количество тепла выделяемого организмом в окружающую среду за единицу времени. Для этого используют специальные камеры с хорошей теплоизоляцией и системой теплоообменных труб, в которых циркулирует и нагревается вода.

    2. Непрямая калориметрия . Она заключается в определении соотношения выделенного углекислого газа и поглощенного кислорода за единицу времени. Т.е. полном газовом анализе. Это соотношение называется дыхательным коэффициентом (ДК).

    Величина дыхательного коэффициента определяется тем, какое вещество окисляется в клетках организма. Например в молекуле углеводов атомов кислорода много, Поэтому на их окисление кислорода идет меньше и их дыхательный коэффициент равен 1. В молекуле липидов кислорода значительно меньше, поэтому дыхательный коэффициент при их окислении 0,7. Дыхательный коэффициент белков 0,8. При смешанном питании его величина 0,85-0,9. Дыхательный коэффициент становится больше 1 при тяжелой физической работе, ацидозе, гипервентиляции и преобразовании в организме углеводов в жиры. Меньше 0,7 он бывает при переходе жиров в углеводы. Исходя из дыхательного коэффициента рассчитывается калорический эквивалент кислорода, т.е. количество энергии выделяемой организмом при потреблении 1 л кислорода. Его величина также зависит от характера окисляемых веществ. Для углеводов он составляет 5 ккал, белков 4,5 ккал, жиров 4,7 ккал. Непрямая калориметрия в клинике производится с помощью аппаратов "Метатест-2", "Спиролит".

    Величина поступившей в организм энергии определяется количеством и энергетической ценностью пищевых веществ. Их энергетическую ценность определяют путем сжигания в бомбе Бертло в атмосфере чистого кислорода. Таким путем получают физический калорический коэффициент. Для белков он равен 5,8 ккал/г, углеводов 4,1 ккал/г, жиров 9,3 ккал/г. Для расчетов используют физиологический калорический коэффициент. Для углеводов и жиров он соответствует физическому, а для белков составляет 4,1 ккал/г. Его меньшая величина для белков объясняется тем, что в организме они расщепляются не до углекислого газа и воды, а да азотсодержащих продуктов.

    Основной обмен

    Количество энергии, которое затрачивается организмом на выполнение жизненно важных функций называется основным обменом. Это затраты энергии на поддержание постоянства температуры тела, работу внутренних органов, нервной системы, желез. Основной обмен измеряется методами прямой и непрямой калориметрии при базисных условиях, т.е. лежа с расслабленными мышцами, при температуре комфорта, натощак. Согласно закону поверхности, сформулированному в 19 веке Рубнером и Рише, величина основного прямопропорциональна площади поверхности тела. Это связано с тем, что наибольшее количество энергии тратится на поддержание постоянства температуры тела. Помимо этого на величину основного обмена влияют пол, возраст, условия окружающей среды, характер питания, состояние желез внутренней секреции, нервной системы. У мужчин основной обмен на 10% больше, чем у женщин. У детей его величина относительно веса тела больше, чем в зрелом возрасте, а у пожилых наоборот меньше. В холодном климате или зимой он возрастает, летом снижается. При гипертиреозе он значительно увеличивается, а гипотиреозе снижается. В среднем величина основного обмена у мужчин 1700 ккал/сут., а у женщин 1550.

    Общий обмен энергии

    Общий обмен энергии это сумма основного обмена, рабочей прибавки и энергии специфически-динамического действия пищи. Рабочая прибавка это энергетические затраты на физическую и умственную работу. По характеру производственной деятельности и энергозатратам выделяют следующие группы работающих:

    1. Лица умственного труда (преподаватели, студенты, врачи и т.д.). Их энергозатраты 2200-3300 ккал/сут.

    2. Работники занятые механизированным трудом (сборщики на конвейере). 2350-3500 ккал/сут.

    3. Лица занятые частично механизированным трудом (шофера). 2500-3700 ккал/сут.

    4. Занятые тяжелым немеханизированным трудом (грузчики). 2900-4200 ккал/сут. Специфически-динамическое действие пищи это энергозатраты на усвоение питательных веществ. Наиболее выражено это действие у белков, меньше у жиров и углеводов. В частности белки повышают энергетический обмен на 30%, а жиры и углеводы на 15%.